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The development cycle and productivity

Extend

Fix

Port

Compiles?

Executes?

Looks ok?

Correct?

Conventional software verification for modeling is slow.
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Some observations

Risk grows with magnitude of implementation step

Magnitude of implementation step grows with cost of
verification/validation

Conclusion:
Optimize productivity by reducing cost of verification!
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Trusting the Science

Climate modeling has grown to be of extreme socioeconomic
importance:

I Adaptation/mitigation strategies easily exceed $100 trillion
I Implications are politically sensitive/divisive
I Scientific integrity is crucial

Software management and testing have not kept pace

I Strong validation against data, but ...
I Validation is a blunt tool for isolating issues in coupled systems
I Validation cannot detect certain types of software defects:

F Those that are only exercised in rare/future regimes
F Those which change results below detection threshold
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Testing
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Test Harness - work in safety

Collection of tests that constrain system

Detects unintended changes

Localizes defects

Improves developer confidence

Decreases risk from change
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Do you write legacy code?

“The main thing that distinguishes legacy code from non-legacy code is
tests, or rather a lack of tests.”

Michael Feathers
Working Effectively with Legacy Code

Lack of tests leads to fear of introducing
subtle bugs and/or changing things
inadvertently.

Programming on a tightrope

This is also a barrier to involving pure

software engineers in the development of

our models.
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Excuses, excuses ...

Takes too much time to write tests

Too difficult to maintain tests

It takes too long to run the tests

It is not my job

“Correct” behavior is unknown

http://java.dzone.com/articles/unit-test-excuses

- James Sugrue

Numeric/scientific code cannot be tested, because ...
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Just what is a test anyway?

Tests can exist in many forms

Conditional termination:
IF (PA( I , J)+PTOP.GT. 1 2 0 0 . ) &

c a l l s t o p m o d e l ( ’ADVECM: P r e s s u r e d i a g n o s t i c e r r o r ’ , 1 1 )

Diagnostic print statement
p r i n t ∗ , ’ l o s s o f mass = ’ , d e l t a M a s s

Visualization of output
Temp1
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Student Version of MATLAB
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Analogy with Scientific Method?

Scientists ought to like TDD:

Objective reality −→ Requirements
Constraints: theory and data −→ Constraints: existing tests

Formulate hypothesis −→ Select a feature
Design experiment −→ Write a test
Run experiment −→ Run tests
Refine hypothesis −→ Refine implementation

http://agile2003.agilealliance.org/files/P6Paper.pdf
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Properties of good tests

Isolating

I Test failure indicates location in source code

Orthogonal

I Each defect results in failure of small number of tests

Complete

I Each bit of functionality covered by at least one test

Independent

I No side effects
I Test order does not matter
I Corollary: cannot terminate execution

Frugal

I Run quickly
I Small memory, etc.

Automated and repeatable
Clear intent
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Anatomy of a Software Test Procedure

testTrajectory() ! s = 1
2 at2

a = 2.; t = 3.

s = trajectory(a, t)

call assertEqual (9., s)call assertEqual (9., trajectory (2.,3.))

! no op
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Testing Frameworks

Provide infrastructure to radically simplify:
I Creating test routines (Test cases)
I Running collections of tests (Test suites)
I Summarizing results

Key feature is collection of assert methods
I Used to express expected results

c a l l a s s e r t E q u a l (1 20 , f a c t o r i a l ( 5 ) )

Generally specific to programming language (xUnit)
I Java (JUnit)
I Pnython (pyUnit)
I C++ (cxxUnit, cppUnit)
I Fortran (FRUIT, FUNIT, pFUnit)

Tom Clune (SSSO) TDD - Testing Frameworks June 5, 2012 19 / 38



GUI - JUnit in Eclipse
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(Somewhat) New Paradigm: TDD

Old paradigm:

Tests written by separate team (black box testing)

Tests written after implementation

Consequences:

Testing schedule compressed for release

Defects detected late in development ($$)

New paradigm

Developers write the tests (white box testing)

Tests written before production code

Enabled by emergence of strong unit testing frameworks
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The TDD cycle
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Benefits of TDD

High reliability

Excellent test coverage

Always “ready-to-ship”

Tests act as maintainable documentation
I Test shows real use case scenario
I Test is maintained through TDD process

Less time spent debugging

Reduced stress / improved confidence

Productivity

Predictable schedule

Porting

Quality implementation?
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Outline

1 Motivations

2 Testing

3 Testing Frameworks

4 Test-Driven Development

5 What about scientific/technical software?
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Unique challenges of numerical software

Difficult to estimate error
I Roundoff
I Truncation

Insufficient analytic cases

Irreducible complexity
I Test would require the same redundant logic
I Appeals to vanity?

Stability/Nonlinearity
I Problems that occur only after long integrations
I More generally - emergent properties of coupled systems

General mitigation strategy:

Fine-grained implementation (each routine does just one thing)

Test layers in isolation
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Numerical Tolerance

For testing numerical results, a good estimate for the tolerance is
necessary:

If too low, then test fails for uninteresnting reasons.

If too high, then the test has no teeth.

Unfortunately ...

Error estimates are seldom available for complex algorithms

Best case - usually asymtotic form with unknown leading coefficient!
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Numerical tolerance (cont’d)

Sources of roundoff
1 Ordinary arithmetic - machine epsilon (not a concern)
2 Nonlinearity - esp. small denominators
3 Composition and iteration

Mitigation
I Tailored synthetic inputs:

eliminate/minimize roundoff from nonlinearity
I Test layers in isolation:

circumvent growth from composition
I Put iteration logic in separate layer:

circumvent growth from iteration

Conclusion: Decomposition and synthetic inputs yield testing
tolerances that are of the same order as machine epsilon.

Tom Clune (SSSO) TDD - What about scientific/technical software? June 5, 2012 28 / 38



Numerical tolerance (cont’d)

Sources of roundoff

1 Ordinary arithmetic - machine epsilon (not a concern)
2 Nonlinearity - esp. small denominators
3 Composition and iteration

Mitigation
I Tailored synthetic inputs:

eliminate/minimize roundoff from nonlinearity
I Test layers in isolation:

circumvent growth from composition
I Put iteration logic in separate layer:

circumvent growth from iteration

Conclusion: Decomposition and synthetic inputs yield testing
tolerances that are of the same order as machine epsilon.

Tom Clune (SSSO) TDD - What about scientific/technical software? June 5, 2012 28 / 38



Numerical tolerance (cont’d)

Sources of roundoff
1 Ordinary arithmetic - machine epsilon (not a concern)

2 Nonlinearity - esp. small denominators
3 Composition and iteration

Mitigation
I Tailored synthetic inputs:

eliminate/minimize roundoff from nonlinearity
I Test layers in isolation:

circumvent growth from composition
I Put iteration logic in separate layer:

circumvent growth from iteration

Conclusion: Decomposition and synthetic inputs yield testing
tolerances that are of the same order as machine epsilon.

Tom Clune (SSSO) TDD - What about scientific/technical software? June 5, 2012 28 / 38



Numerical tolerance (cont’d)

Sources of roundoff
1 Ordinary arithmetic - machine epsilon (not a concern)
2 Nonlinearity - esp. small denominators

3 Composition and iteration

Mitigation
I Tailored synthetic inputs:

eliminate/minimize roundoff from nonlinearity
I Test layers in isolation:

circumvent growth from composition
I Put iteration logic in separate layer:

circumvent growth from iteration

Conclusion: Decomposition and synthetic inputs yield testing
tolerances that are of the same order as machine epsilon.

Tom Clune (SSSO) TDD - What about scientific/technical software? June 5, 2012 28 / 38



Numerical tolerance (cont’d)

Sources of roundoff
1 Ordinary arithmetic - machine epsilon (not a concern)
2 Nonlinearity - esp. small denominators
3 Composition and iteration

Mitigation
I Tailored synthetic inputs:

eliminate/minimize roundoff from nonlinearity
I Test layers in isolation:

circumvent growth from composition
I Put iteration logic in separate layer:

circumvent growth from iteration

Conclusion: Decomposition and synthetic inputs yield testing
tolerances that are of the same order as machine epsilon.

Tom Clune (SSSO) TDD - What about scientific/technical software? June 5, 2012 28 / 38



Numerical tolerance (cont’d)

Sources of roundoff
1 Ordinary arithmetic - machine epsilon (not a concern)
2 Nonlinearity - esp. small denominators
3 Composition and iteration

Mitigation

I Tailored synthetic inputs:
eliminate/minimize roundoff from nonlinearity

I Test layers in isolation:
circumvent growth from composition

I Put iteration logic in separate layer:
circumvent growth from iteration

Conclusion: Decomposition and synthetic inputs yield testing
tolerances that are of the same order as machine epsilon.

Tom Clune (SSSO) TDD - What about scientific/technical software? June 5, 2012 28 / 38



Numerical tolerance (cont’d)

Sources of roundoff
1 Ordinary arithmetic - machine epsilon (not a concern)
2 Nonlinearity - esp. small denominators
3 Composition and iteration

Mitigation
I Tailored synthetic inputs:

eliminate/minimize roundoff from nonlinearity

I Test layers in isolation:
circumvent growth from composition

I Put iteration logic in separate layer:
circumvent growth from iteration

Conclusion: Decomposition and synthetic inputs yield testing
tolerances that are of the same order as machine epsilon.

Tom Clune (SSSO) TDD - What about scientific/technical software? June 5, 2012 28 / 38



Numerical tolerance (cont’d)

Sources of roundoff
1 Ordinary arithmetic - machine epsilon (not a concern)
2 Nonlinearity - esp. small denominators
3 Composition and iteration

Mitigation
I Tailored synthetic inputs:

eliminate/minimize roundoff from nonlinearity
I Test layers in isolation:

circumvent growth from composition

I Put iteration logic in separate layer:
circumvent growth from iteration

Conclusion: Decomposition and synthetic inputs yield testing
tolerances that are of the same order as machine epsilon.

Tom Clune (SSSO) TDD - What about scientific/technical software? June 5, 2012 28 / 38



Numerical tolerance (cont’d)

Sources of roundoff
1 Ordinary arithmetic - machine epsilon (not a concern)
2 Nonlinearity - esp. small denominators
3 Composition and iteration

Mitigation
I Tailored synthetic inputs:

eliminate/minimize roundoff from nonlinearity
I Test layers in isolation:

circumvent growth from composition
I Put iteration logic in separate layer:

circumvent growth from iteration

Conclusion: Decomposition and synthetic inputs yield testing
tolerances that are of the same order as machine epsilon.

Tom Clune (SSSO) TDD - What about scientific/technical software? June 5, 2012 28 / 38



Numerical tolerance (cont’d)

Sources of roundoff
1 Ordinary arithmetic - machine epsilon (not a concern)
2 Nonlinearity - esp. small denominators
3 Composition and iteration

Mitigation
I Tailored synthetic inputs:

eliminate/minimize roundoff from nonlinearity
I Test layers in isolation:

circumvent growth from composition
I Put iteration logic in separate layer:

circumvent growth from iteration

Conclusion: Decomposition and synthetic inputs yield testing
tolerances that are of the same order as machine epsilon.

Tom Clune (SSSO) TDD - What about scientific/technical software? June 5, 2012 28 / 38



Test layers in isolation

Example: Procedure that does too much

. . .
a = <complex e x p r e s s i o n >
b = <complex e x p r e s s i o n >
c = <complex e x p r e s s i o n >
r e t u r n a + s q r t ( b/ c )

Same capability, but split into two decoupled levels

. . .
a = f 1 ( . . . )
b = f 2 ( . . . )
c = f 3 ( . . . )
r e t u r n g ( a , b , c )

Higher level test ensures proper coupling, but not fully expanded
arithmetic.
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Test layers in isolation (cont’d)

Consider the main loop of a climate model:

Do test

Proper # of iterations

Pieces called in correct order

Passing of data between
components

Do NOT test

Calculations inside components

Much easier to do in practice with objects than with procedures.
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TDD and lack of analytic results

Complex algorithms often yield few if any analytic solutions

And yet we attempt software implementations. How can this be?

Difficulty generally arises from composition and iteration

Mitigation:
I Test algorithmic steps in isolation
I Tailor synthetic inputs to yield “obvious” results for each step
I Use integration tests to verify that steps are composed correctly

But still use high level analytic solutions as tests whenever possible

Consider Newton’s three-body problem - no analytic solution

Test generation of pairwise forces

Test time integration (e.g., RK4)

Use special cases that have solutions as additional tests
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Irreducible complexity

“Aren’t my tests as complex as the implementation?”
“Aren’t my tests doing redundant calculations (tautological)?”

Short answer: No

Long answer: Well, they shouldn’t be ...
I Unit tests use tailored inputs - implementation handles generic case
I Model layers are tested in isolation
I Tests are decoupled - low complexity
I Actual model couples layers - huge complexity
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Long integration and emergent properties

TDD generally does not directly address such issues

If long integration gets incorrect results, one of the following holds:
1 Individual steps have defects - add tests
2 Integration has a defect - add tests
3 Component steps lack necessary accuracy - need tests and improved

algorithm
4 Insufficient physical fidelity - genuine science challenge

At the very least, TDD can reduce the frequency at which long
integrations are needed/performed
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TDD and performance

TDD emphasizes small fine-grained implementations

Such implementations are often sub-optimal in terms of performance

Optimized implementations typically fuse multiple operations

Solution: bootstrapping
I Use initial TDD solution as unit test for optimized implementation
I Maintain both implementations
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TDD and the legacy burden

TDD was created for developing new code, and does not directly
speak to maintaining legacy code.

Adding new functionality
I Avoid wedging new loging directly into existing large procedure
I Use TDD to develop separate facility for new computation
I Just call the new procedure from the large legacy procedure

Refactoring
I Use unit tests to constrain existing behavior
I Very difficult for large procedures
I Try to find small pieces to pull out into new procedures
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https://modelingguru.nasa.gov/docs/DOC-1982
https://modelingguru.nasa.gov/docs/DOC-1983
https://modelingguru.nasa.gov/docs/DOC-1984
https://modelingguru.nasa.gov/blogs/modelingwithtdd
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://junit.sourceforge.net/
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